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Dissolution of carbon dioxide (CO2) injected into saline aquifers causes an unstable
high-density diffusive front. Understanding how instability fingers develop has received
much attention because they accelerate dissolution trapping, which favours long-
term sequestration. The time for the onset of convection as the dominant transport
mechanism has been traditionally studied by neglecting dispersion and treating the
CO2–brine interface as a prescribed concentration boundary by analogy to a thermal
convection problem. This work explores the effect of these simplifications. Results
show that accounting for the CO2 mass flux across the prescribed concentration
boundary has little effect on the onset of convection. However, accounting for
dispersion causes a reduction of up to two orders of magnitude on the onset time.
This implies that CO2 dissolution can be accelerated by activating dispersion as a
transport mechanism, which can be achieved adopting a fluctuating injection regime.

1. Introduction
Carbon dioxide (CO2) injection in saline aquifers has been proposed as a method

to reduce greenhouse gas emissions (IPCC 2005). CO2 is injected under a cap rock
forming a plume less dense than the brine, which floats while spreading horizontally.
CO2 dissolves in the underlying brine, which is favourable for several reasons. First,
it facilitates the transformation of CO2 to more stable species such as bicarbonate
or, if geological conditions are propitious, solid mineral carbonates (Lackner et al.
1995). Second, it reduces the risk of upward leaks both because the viscosity of brine
is much larger than that of any CO2 phase (Adams & Bachu 2002) and because
CO2-rich brine is 1–2 % denser than resident brine (Yang & Gu 2006). The resulting
conditions (denser liquid on top) are unstable so that CO2-rich brine will tend to sink.

CO2 dissolution into the brine is initially controlled by diffusion, which is a slow
process with mass flux evolving as t−1/2, where t is time. As time passes, the small
perturbations of the CO2 diffusive front caused by heterogeneity or a fluctuating
injection regime will tend to strengthen. That is, when enough CO2 has dissolved, the
perturbations will tend to progress, causing CO2-rich brine to sink as fingers into the
CO2-free brine, which is termed the convective regime. The onset of this regime is
important because by bringing dissolved CO2 away from the dissolution front, CO2
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dissolution is enhanced (Lindeberg & Bergmo 2003), which favours the sequestration
process. However, it can take a long time to develop.

The conditions under which convection is activated have received great attention
in recent years. Conceptually, CO2 dissolution is an unstable boundary-layer problem
analogous to the one found when a fluid is overlaid by a cold boundary (Rees, Selim &
Ennis-King 2008). Following this analogy, CO2 dissolution is solved in a semi-infinite
domain with a top impervious boundary where concentration is prescribed equal to
CO2 solubility. The brine is assumed incompressible, the Boussinesq approximation
valid and the porous medium homogeneous. Under these assumptions, the time for the
onset of convection is inversely proportional to the square of permeability (Lindeberg
& Bergmo 2003). In fact, the onset time decreases when either horizontal or vertical
permeabilities increase (Xu, Chen & Zhang 2006). Linear stability analysis can be
performed on the basis of a Rayleigh number computed using the domain thickness
(Hassanzadeh, Pooladi-Darvish & Keith 2005; Riaz et al. 2006). Yet, results show
that the time for the onset of convection is not dependent on the Rayleigh number
(Riaz et al. 2006). This is reasonable because convection only affects the aquifer top
and should not be sensitive to the thickness of the aquifer. Therefore, it should not
depend on the Rayleigh number (Riaz et al. 2006; Rees et al. 2008).

Several issues concerning this conceptual model can be raised that may affect the
time for the onset of convection. The first one is the analogy to a heat transport
problem. In a heat transport model, the fluid may be assumed to consist of a single
component. Heat transport and fluid flow are basically linked through the buoyancy
term. However, in mass transport problems the fluid must be viewed as consisting of
at least two components (i.e. brine and CO2). Since the flow equation expresses the
mass balance of the whole fluid phase, additions of any of the two components must
be accounted for in the mass balance. Specifically, while an impervious boundary
(i.e. a boundary with zero brine flux) can be treated as a zero mass flux in thermal
problems, it must allow for fluid mass flux (CO2 component) in mass transport
problems (Hassanizadeh & Leijnse 1988; Hidalgo, Carrera & Medina 2009b).

The second issue refers to the simplifications assumed for flow and transport
problems. For flow, the fluid is considered incompressible and the Boussinesq
approximation valid. However, fluid density increases slightly with pressure. More
importantly, porosity also increases because the porous medium is also compressible,
and an increment in fluid pressure will cause a decrease in effective stress (stress
transmitted by the solid). As a result, fluid flux cannot be assumed divergence free.
In fact, acknowledging compressibility helps in simulating the pressure rise caused by
the influx of CO2, which helps in promoting CO2 flux downwards. The Boussinesq
approximation may affect the transient solution (Johannsen 2003), although it is valid
for the range of values of the Rayleigh number that will be presented here (Landman
& Schotting 2007). For transport, dispersion is neglected. Hydrodynamic dispersion
accounts for the effects of the deviations from the mean flow caused by heterogeneity
in permeability. Heterogeneity is present in all natural systems. Therefore, dispersion
has to be included in any realistic transport formulation, as pointed by Riaz et al.
(2006). Notice that dispersion is often neglected in thermal analogies, which are
the basis of many CO2 dissolution models. This is controversial (see Ferguson &
Woodbury 2005; Hidalgo, Carrera & Dentz 2009a) but may be justified because
of the relatively large value of thermal conductivity. However, dispersion cannot be
disregarded in solute transport because it is usually much larger than molecular
diffusion. In fact, dispersion can be artificially increased if a fluctuating injection
regime is adopted (Dentz & Carrera 2003).
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The third issue relates to the choice of dimensionless numbers. The fact that
the time for the onset of convection should not depend on the Rayleigh number
suggests eliminating it as dimensionless number. Instead, it can be used to define the
characteristic (vertical) length scale, as suggested by Rees et al. (2008).

The objective of this work is to address these three issues and, specifically, to assess
how a more realistic representation of CO2 dissolution affects the time for the onset
of convection.

2. Governing equations
2.1. Dimensional form

The compressible density-dependent flow and advective–diffusive–dispersive transport
equations, which govern CO2 dissolution in a saline aquifer, are written as (e.g. Bear
1972)

ρSp

∂p

∂t
+ ρθβω

∂ω

∂t
= −∇·(ρu), (2.1)

ρθ
∂ω

∂t
= −ρu · ∇ω + ∇ · (ρ(θDmI + D)∇ω), (2.2)

where ρ[ML−3] is fluid density; Sp[M−1LT 2] is the specific storativity; p[ML−1T −2]
is pressure; t[T ] is time; θ[−] is the volumetric fluid content (porosity); βω =
(1/ρ) ∂ρ/∂ω[−] is considered constant; ω[−] is CO2 mass fraction; u[LT −1] is the
Darcy velocity; Dm[L2T −1] is the molecular diffusion coefficient; I is the identity
matrix; and D[L2T −1] is the hydrodynamic dispersion tensor, given by

Dij = αT ‖u‖ δij + (αL − αT )
uiuj

‖u‖ (i, j = x, z), (2.3)

where αL[L] and αT [L] are the longitudinal and transverse dispersivities respectively,
δij is the Kronecker delta and ‖ · ‖ is the Euclidean norm. Finally, the Darcy velocity
u is written as

u = − k

μ
(∇p + ρgêz) , (2.4)

with k[L2] the permeability, μ[ML−1T −1] the viscosity, g[LT −2] the gravity
acceleration and êz the unit vector pointing upwards.

The domain is conceptually considered semi-infinite; i.e. there is no interaction with
the lower and lateral boundaries. The dissolution interphase between the CO2, and
the brine is located at the top of the domain, i.e. z = 0. The brine component cannot
flow across this interphase, but the mass fraction of CO2 in the brine is prescribed
at its solubility, which causes an inward flux of CO2. Therefore, boundary conditions
are written as

−ρu|b · n = ms if z = 0,

u|b · n = 0 for x → ±∞, or z → −∞,

}
(2.5)

for flow and

ω|b = ωs if z = 0,

(−uω + (θDmI + D)∇ω)|b · n = 0 for x → ±∞, or z → −∞,

}
(2.6)

for transport. In these equations n is the unit vector normal to the boundary pointing
outwards; ms[ML−2T −1] is the CO2 mass flux across the top boundary; ωs is CO2

solubility in brine; and |b indicates evaluation at the boundary.
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The conceptual model proposed by (2.1)–(2.6) introduces several modifications with
respect to previous CO2 dissolution models. First, governing equations acknowledge
fluid and, especially, porous medium compressibility through the specific storativity
coefficient, which accounts for water compressibility and the elastic properties of
the porous matrix. Second, hydrodynamic dispersion is included as a transport
mechanism. Third, density gradients are fully accounted for (i.e. the Boussinesq
simplification is not assumed). Finally, boundary conditions include the CO2 mass
flux across the top boundary. This CO2 flux is

ms = (−ρuω + ρ(θDmI + D)∇ω)|b · n. (2.7)

Subtracting (2.5) multiplied by ω from (2.7) yields

ms =
1

1 − ω
ρ(θDm + Dzz)

∂ω

∂z

∣∣∣∣
b

, (2.8)

where it has been imposed that the concentration gradient is vertical.
In thermal problems ms is always null because a prescribed temperature boundary

is not a fluid source. However, a prescribed concentration boundary constitutes a
source of CO2 that should be accounted for in fluid mass balance, i.e. flow equation
and boundary conditions, as it is a fluid component (Hassanizadeh & Leijnse 1988;
Hidalgo et al. 2009b). Thermal analogies are common in this kind of problems, and
they imply neglecting ms in (2.5). This approach will be termed inconsistent here
because the resulting flow and transport balances are not consistent with each other.
When ms is acknowledged, the approach will be termed consistent.

Equation (2.8) might suggest that the CO2 mass flux across the top boundary
is identical to that of the thermal analogies used by, e.g., Riaz et al. (2006) or
Hassanzadeh et al. (2005), except for the factor (1 − ω), which should be close to 1
in practical applications. Actually, there are two other differences. First, the vertical
fluid flux at z = 0 (2.5) is non-zero. Second, as a consequence, dispersion is activated
as a transport mechanism from the outset. Therefore, the effect of this simplification
is non-trivial and needs to be assessed through numerical simulations.

2.2. Dimensionless form

For analysis purposes, it is convenient to write governing equations in a dimensionless
form. Gravity instability, at least for heat transfer between two prescribed temperature
plates separated by a distance H , is classically expressed as a function of the Rayleigh
number

Ra =
ubH

θDm

, (2.9)

where ub = k	ρg/μ, chosen as velocity scale, is the modulus of the buoyancy driving
force when ω = ωs , and, for CO2 transport, 	ρ is the density contrast between the
CO2-free and the CO2-saturated brine. However, as mentioned in the introduction,
the onset of convection should not be sensitive to H . In fact, the governing equations
have been written for a semi-infinite domain, so that there is no natural physical
length scale. Therefore, the selection of a length scale is somewhat arbitrary. In
diffusive problems it is not uncommon to choose the characteristic length as the one
that makes the Rayleigh number equal to 1 (see Rees et al. 2008). Doing so, and
ensuring also a unit coefficient for time derivatives, leads to the characteristic length
and time scales,

Ls =
θDm

ub

, ts =
θ2Dm

u2
b

. (2.10)



Dispersive onset 445

It should be noted that ts depends on porosity squared, instead of simply porosity,
which is the usual choice (Tan, Sam & Jamaludin 2003). The difference probably
reflects the thermal origin of this kind of formulations and lacks conceptual relevance,
but it will be necessary for later comparisons with previous works.

These scales can be generalized to include the effect of dispersion. Therefore, the
characteristic length and time scales are chosen as

Ls =
θDm + αLub

ub

, ts =
θ(θDm + αLub)

u2
b

. (2.11)

Using these scaling factors, the dimensionless form of the flow and transport
equations becomes

∂p′

∂t ′ + βω

∂ω

∂t ′ = − 1

ρ ′ ∇
′ · (ρ ′u′), (2.12)

∂ω

∂t ′ = −u′ · ∇′ω +
1

ρ ′ ∇
′ · (ρ ′((1 − bL)I + bLD′)∇′ω), (2.13)

where the prime denotes the dimensionless variables, defined as

(x ′, z′) =
1

Ls

(x, z), t ′ =
t

ts
, (2.14)

ρ ′ =
ρ

	ρ
, p′ =

Sp

θ
p, (2.15)

u′ =
u
ub

= − θ

Sp	ρgLs

∇′p′ − ρ ′ êz (2.16)

and

D′
ij = rT ‖u′‖δij + (1 − rT )

u′
iu

′
j

‖u′‖ . (2.17)

Dispersion is characterized with the dimensionless numbers of Abarca et al. (2007):

bL =
αL

Ls

and rT =
αT

αL

. (2.18)

Notice that bL can be viewed as a Rayleigh number defined in terms of dispersion
as mass transfer coefficient, instead of Dm, and longitudinal dispersivity αL as length
scale, instead of H . In what follows, Ra as defined in (2.9) is used for classification
and comparison purposes, and bL to describe dispersion.

The resulting boundary conditions are

−ρ ′u′|b · n = m′
s if z′ = 0,

u′|b · n = 0 for x ′ → ±∞, or z′ → −∞,

}
(2.19)

for flow and

ω|b = ωs if z′ = 0,

(−u′ω + ((1 − bL)I + bLD′)∇′ω)|b · n = 0 for x ′ → ±∞, or z′ → −∞,

}
(2.20)

for transport. Finally, the dimensionless CO2 mass flux across the top boundary is

m′
s =

1

1 − ω
ρ ′(1 + bL(u′

z − 1))
∂ω

∂z′ , (2.21)
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Parameters maintained constant Parameters subject to variation

H = 10 m k = 3.0581 × 10−13, 6.1162 × 10−13 m2

Sp = 1.02 × 10−8 Pa−1 αL = 0–0.5 m
μ = 5 × 10−4 Pa s αT = 0.1αL

	ρ = 5 kg m−3

θ = 0.3
Dm = 10−9 m2 s−1

Table 1. Parameters used for numerical simulations.

where

m′
s =

ms

ub	ρ
. (2.22)

3. Numerical analysis
CO2 dissolution was simulated using the code Transdens (Hidalgo et al. 2005).

Transdens solves density-dependent flow and transport problems using a finite-element
discretization in space and weighted finite differences in time. Reverse time weighting
(Saaltink, Carrera & Olivella 2004) is used to minimize mass balance error during time
integration. The Darcy velocity is computed using the consistent velocity algorithm by
Knabner & Frolkovič (1996). The code has been extensively validated using the usual
density-dependent problem benchmarks (Henry, Elder, saltwater bucket and similar
problems) and by comparison with other codes (e.g. Hidalgo et al. 2005, 2009b).

Instabilities in the system were triggered by the propagation of numerical errors.
This approach has been subject to some debate. While Schincariol, Schwartz
& Mendoza (1994) held that the resulting fingering pattern would not match
experimental results, Liu & Dane (1997) showed that it was possible to create
physically realistic gravitational instabilities provided that dispersivity values were
small. Moreover, Selim & Rees (2007) concluded that the profile of the initial
disturbance has little effect on the critical time when the regime becomes unstable
given that the disturbance is introduced early enough, which is assured by the highly
nonlinear nature of the consistent boundary condition. The ensuing convergence
process does introduce disturbances. Therefore, it is assumed that, for the purpose of
this work, numerical errors are sufficient to generate instabilities in the system.

Simulations were carried out on a square domain of 10 m × 10 m (between 17.86
and 2000 in terms of dimensionless distance depending on bL), which proved to be
large enough to warrant that there was no interaction with the lower boundary.
The domain was discretized with a mesh of rectangular finite elements of 101 ×
201 nodes. This discretization provides a good balance between numerical precision
and computational performance. A sensitivity analysis of discretization showed that
results for the onset of convection were little affected when using a finer mesh
(a difference smaller than 2 %). The qualitative behaviour of the system was not
modified. Parameters (see table 1) were chosen equal to those in Riaz et al. (2006) for
comparison purposes. Only permeability and dispersivities were subject to change to
study their effect on the system behaviour. To facilitate classification and comparison
with previous works, the different cases will also be identified by a Rayleigh number
as defined in (2.9) using H , the domain thickness, as the characteristic length instead
of (2.11).
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Figure 1. CO2 mass fraction results using the (a, c) inconsistent and (b, d ) consistent flow
and transport boundary conditions for two different times (case Ra = 1000, bL = 0, rT = 0.1,
ωs = 0.0175). Colour scale is expressed in terms of fractions of maximum mass fraction ωs ,
which equals 0.0175 in this run.

3.1. Effect of CO2 flux at the prescribed concentration boundary

To assess the effect of acknowledging the CO2 mass influx at the prescribed
concentration boundary, the problem was simulated with ωs equal to 1 and 0.0175.
The second one is a realistic value for the CO2 solubility (Rosenbauer, Koksalan
& Palandri 2005). Density contrast was kept identical in both cases by scaling βω

accordingly. For both values of ωs , the problem was solved with an inconsistent
boundary flow condition (m′

s = 0 in (2.19) as in previous works) and with a consistent
one (m′

s evaluated at the prescribed concentration boundary).
Results for CO2 mass fraction are depicted in figure 1, which corresponds to a case

in which Ra = 1000, bL = 0, rT = 0.1, ωs = 0.0175. Differences in concentration are
moderate for realistic values of ωs . All solutions display an unstable fingering pattern
except for the consistent case with ωs = 1 (not shown), in which the CO2 front reaches
the lower boundary before fingering has become relevant. The consistent scheme with
a realistic value of ωs leads to thicker fingers that sink slightly faster than the ones
in the inconsistent scheme. Differences are due to the slight increase in mass flux
caused by the (1 − ω) term in (2.21) and to the differences in pressure gradient (not
shown). Regarding the latter, it should be noticed that in the inconsistent case, as in
thermal analogies, fluid density increases at the top boundary without a corresponding
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Figure 2. (a) Evolution of CO2 mass flux across the top boundary and modulus of maximum
velocity evolution for Ra = 1000, bL = 0.5, rT = 0.1 and ωs = 0.0175. (b) CO2 mass flux
across the top boundary for the same case and ωs = 0.0175 and 1.

increase in fluid mass. This can only be compensated by a reduction in pressure. As
a result, water flows upwards. This effect is not noticeable in thermal analogies
because compressibility effects are neglected and the flux becomes divergence free.
The consistent scheme, on the other hand, leads to a pressure increase and fluid
to flow downwards. This is important only at the beginning of the simulations. At
later times, velocity is dominated by buoyancy and, therefore, independent of the
consistency in boundary conditions. This explains why the fingering pattern is not
largely affected by boundary conditions.

3.2. Onset of convection

The transition from the diffusive to the convective regime can be identified from either
the time evolution of the CO2 mass flux across the top boundary or the modulus
of the maximum velocity (figure 2). The diffusive regime is identified by the −1/2
slope line in the log-log plot of mass flux versus time. Convection is assumed to be
the main transport mechanism when the flux departs from this line. The precise time
for onset of convection is defined here as the time when mass flux is minimum (i.e.
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when convection is sufficient to compensate the reducing trend of diffusion). This
definition will be used to determine the effect of boundary conditions and dispersion
on the onset of convection. Notice that this choice leads to slightly larger onset times
than the one based on the sharp increase in the modulus of velocity. The mass flux
criterion is adopted because the resulting onset time is informative of the time when
convective effects become noticeable on CO2 dissolution rates.

The effect of boundary conditions can be seen in figure 2(b). It can be seen that the
injection behaviour depends strongly on the value of the prescribed concentration for
the consistent case. This is due to the form of the mass flux at this boundary (2.21)
which displays a singularity at ω = 1. It causes the difference between the consistent
and inconsistent solutions to grow as ωs tends to 1. The onset time is only slightly
affected by the consistency in boundary conditions for reasonable values of ωs . On
the contrary, when ωs = 1, the mass flux is so dramatically increased that fingering
instabilities cannot develop.

A sequence of simulations were performed to assess the effect of dispersion on the
onset of convection. The values of bL range between 0 and 0.995, while rT is kept
constant at 0.1. The bL range (and accordingly αL and αT ; see table 1) is consistent
with the results obtained by Gelhar, Welty & Rehfeldt (1992) from the analysis of
worldwide data on dispersion. They also observed the 1/10 relation between transverse
and longitudinal dispersion, which has become a rule of thumb in hydrogeological
models. Recently, Bijeljic & Blunt (2007) showed that this relation is adequate when
the system is in the convective regime. Only the ωs = 0.0175 case was simulated,
and two different values of Ra were selected (1000 and 2000) by changing k (see
table 1).

Results for CO2 mass flux evolution are shown in figure 3. For the consistent
diffusive cases (bL = 0) the convective regime is developed after t ′ approximately equal
to 5600 (some 18 years with the parameters of table 1). In terms of dimensionless
time, the onset of convection is independent of the Rayleigh number. The consistent
formulation always leads to a reduction in the onset time, which is most significant
for moderately large values of bL. It is interesting to notice that the minimum mass
flux is approximately constant and equal to m′

s = 18ωs . Similarly, it tends to values
between 40ωs and 50ωs after the onset of convection.

The dependence of the onset time with bL is best illustrated by figure 4. The onset
time decreases linearly with bL and tends to stabilize for bL > 0.96, which may reflect
the smoothing (and stabilization) of the CO2 front caused by lateral mixing for large
dispersion.

Linear regression of the data points for the consistent cases in figure 4 yields

t ′
onset ≈ 5619 − 5731bL. (3.1)

This expression can only be compared with previous results for the case bL = 0. As
mentioned in § 2.2, the dimensionless times of Riaz et al. (2006) and Tan et al. (2003)
need to be divided by porosity to be comparable to (3.1). The 5619 dimensionless
time of (3.1) for the onset of convection in the absence of dispersion lies between
the 487 of Riaz et al. (2006) and the 7540 of Tan et al. (2003). Differences can be
attributed to several factors. First, the model setting is slightly different. Both Riaz
et al. (2006) and Tan et al. (2003) adopted the Boussinesq assumption, which should
not make much of a difference, and the here-termed inconsistent boundary condition,
which causes a slight overestimation of the onset time. Second, the definition of onset
is also slightly different, which may account for a factor of around 2 (recall figure 2).
Third, discrepancies may also result from limitations in the numerical scheme. The
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Figure 3. CO2 mass flux across the top boundary for different values of bL (rT = 0.1,
ωs = 0.0175, Ra = 1000, 2000).
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selected spatial discretization may be not enough to resolve the smallest wavelength
of the problem. Finally, the linear stability analysis behind the 487 dimensionless time
tends to underestimate the actual onset time (Riaz et al. 2006). In fact, the numerical
simulations in figure 14 of Riaz et al. (2006), where the position of the most advanced
portion of the front as a function of time is plotted, lead to dimensionless onset times
between 2000 and 3200, which are comparable to the one of (3.1).

4. Conclusions
The onset of fingering and convective transport can be faster than predicted by

previous works. This results mainly from acknowledging CO2 mass sources in fluid
mass balance equations and from including dispersion as a transport mechanism. The
compressibility of fluid and medium and the removal of the Boussinesq simplification
do not seem to play a critical role. The consistent representation of the CO2 boundary
as a fluid mass source becomes critical only when unrealistically high values of CO2

solubility are used.
Dispersion, which is present in all real systems, accelerates significantly the time

when convection becomes the dominant transport mechanism. In fact, this time
decreases linearly with dispersivity, reaching values around 100 times shorter than
those of purely diffusive cases. This is important because dispersion can be increased
by simply adopting a fluctuating injection regime.

The final version of the paper has greatly benefited from comments by three
anonymous referees, one of which motivated the dimensionless formulation adopted.
The authors gratefully acknowledge financial support of the Spanish Ministry of
Science and Innovation (MICINN) through the PSE-CO2 project (PSE-120000-2007-
6), of the Spanish Government through the Fundación Ciudad de la Energı́a-CIUDEN
and the European Union through project MUSTANG (FP7-ENERGY-2008-1, project
number 227286).
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